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CALCULATION OF MASS TRANSPORT IN NONISOTHERMAL 

EVAPORATION OF LIQUIDS FROM CAPILLARIES WITH 

CONSIDERATION OF VARIABLE VISCOSITY OF THE 

VAPOR-GAS MIXTURE 

N. I. Gamayunov and A. A. Lankov UDC 532.72:536.423.1 

The principles of vapor transport in a cylindrical capillary with temper- 
ature gradient are studied. Expressions are found for vapor flux and 
pressure of the mixture above the liquid meniscus in various evaporation 
regimes. 

We will consider a cylindrical capillary of radius r, filled by a liquid, from the open 
surface of which evaporation occurs. We direct a Coordinate axis from the mouth of the chan- 
nel (x = 0) toward the liquid meniscus (x = 0 We assume that the partial vapor pressure 
at the channel mouth P01 is constant and always less than the saturated vapor pressure at 
the liquid meniscus temperature Ps[T(~)]. The temperature varies along the capillary axis 
linearly, T(x) = T o + VTx. The binary gas mixture into which the liquid evaporates consists 
of molecules of vapor (first component) and gas (second component). We will perform the 
analysis with the assumption that the medium is continuous (Kn ~ i) and that the flow of 
the vapor-gas mixture within the capillary is steady-state and one-dimensional. Thermodif- 
fusion and barodiffusion components of the flow will not be considered because of their 
smallness. 

In the general case in which no limitations are imposed on the vapor transport regime 
and it is necessary to consider both the hydrodynamic flow of the vapor-gas mixture and in- 
terdiffusion of the components, the densities of the steady-state vapor and gas flows in a 
coordinate system fixed to the capillary are described by the following equations: 

]1 = - -  D (x) dp, (x) r"pl (x) dP (x) __ const. (1) 
dx 8~1 (x) dx 

/2 ~ - -  D (x) dpz (x) r P2 (x) d P  (x) 0 ( 2 )  
dx 8q (x) dx 
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The vapor flow density through any section of the cylindrical capillary is constant. 
This follows from the continuity equation when the transport process is considered in the 
steady-state approximation. Equality to zero of the gas flow density is a consequence of 
the condition of its nonpenetration through the boundary separating the phases. 

The diffusion coefficients for vapor molecules into the gas and gas into the vapor are 
assumed equal and their dependence on total mixture pressure and temperature have the form 
(1) 

DoPo f V (x) ]m 
D,2(x) :-= D21(x ) =: D(x)- - P(x) L-T~-o J ' (3) 

where P0 = P(x = 0);  D o = D(x = 0);  m i s  a cons t an t  number. 

Each of the  mix ture  components obeys the  i d e a l  gas law, so t h a t  

o1 (x) - ~IP1 (x___~) ,  o~ (x) -- ~ P ~  (x) ( 4 )  
RT (x) RT (x) 

In the majority of cases the dynamic viscosity coefficient of the mixture can be deter- 
mined accurately by the following empirical expression (2): 

[P,(x) __P2(x) ~2] {1-7- I [P,(x) d(x)lt. (5) 
~ (x) = [ P--(~-x) n ' *  ~ -~-- [ -P--(-~ P: (x)JJ 

Considering the relationship Pz(x) + Pi(x) = P(x), we obtain from Eq. (5) 

B(x) = ~, [l  + ( ~2--~1 @ 1 ~ ,  a )P~(X)ip (x) + (B~--2Bx) P$ ( X ) a B x p  2 (x) (B2 --- 'h) P~ (x) ] a , h  P3 (x) ' (6) 

where ql and q2 are the viscosities of the components at the mean temperature of the vapor- 
gas mixture T(~/2) = T O + 7T~/2; a is some constant coefficient (for a mixture of water 
vapor with air a = 2.75). 

With consideration of Eq. (4), Eqs. (i) and (2) reduce to the form 

], _ p,1D (X) {. dPa (x) vTPa (x) + r2P~ (x) dP (x_~).1, (7) 
RT (x) dx T (x) 8~1 (x) D (x) dx J 

]2 = ~hD (x) [ dP2 (x) vTP., (x) ~_ r2P~ (x) dP (x) } = O. 
RT (x) [ dx T (x) 8TI (x) D (x) dx (8) 

With the aid of Eqs. (7), (8) we determine the vapor flux density 

~D (x) IdP(x) vTP (x) jr_ r~P (x) dP (x) ! 
]1 ..... RT (x) { dx T (x) 8TI (x) D (x) dx J' 

or, according to Eq. (8), 

h =_ 

( 9 )  

d [ln P(x) ] 
Fl,DoPo L P~ (x) J (10) 

dx RTo ( I ~ vTx ) 1 T o  .... 

We obtain an expression for the vapor flux density by integrating this last equation 
with the known boundary conditions x = 0, P(x) = P0, P=(x) = P0 - P01; x = s P(x) = Ps 
P=(x) = es - Ps(s 

V T (2 --  m) Do~IP o In P~ (Po - -  Po,) 
] 1 -  [ (  1 2 .... --1 J RT~ Po[Pz-- P~(I)] 1@ VTI ( i i )  

To , 
The coefficient 7T~(2 -m)/T0[l + ATg/T0) 2-m - i] in this equation considers the effect on 
the intensity of vapor transport of chan~e in temperature and the diffusion coefficient over 
channel length, beginning from the mouth. If the condition 

v T l ~  T~ (12) 
2 
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is satisfied, this coefficient can be calculated with an uncertainty of no more than 0.5% 
while retaining only the first three terms of the expansion of the function (i + ATs 2-m 
in a power series. In this case Eq. (ii) simplifies: 

Do,%Po(1 + vTI ) .... 1 
]~ . . . .  2T~ In P~(Po --  Pot) (13) 

RTol Po [PI-- P~ (l)] 
With increase in s the saturated vapor pressure above the liquid meniscus changes, as 

follows from the Clapeyron-Clausius equation, by the law [3]: 

P~ (I) = P~ (0) exp 1 L~ 1. 
tRToT (l) J ( 1 4 )  

In Eq. (13) the value of the vapor-gas mixture pressure above the liquid meniscus P~ 
remains unknown. From Eq. (8) with consideration of Eqs. (5), (3) we have 

dP2(x) _~_(~h--41 + - 1 ) dP2(x ) Oh--2n,)Ps(x)dP2(x) 
-P~ (x---~ 4, a P (x) -6 aq,e" (x) 

~ { ( 1 )P.,(.v) (rl= --  ~h) P~ (x) dP z (x) Vrdx ah --  'h -6 __. 
-- mllP 3 (x) T (x) I-6 , 4J-- a , P (x) 

-6 ('h - -  2rh) P.~ (x) 01.~ --41) P~ (x) } _ r"-P (x) dP (x) 
arhP 2 (x) aq,P 3 (.'c) 8qlOoP o ( I-I- VTX. )"' 

~, r 0 

§ 

(15) 

To find the dependence of the molar fraction of gas in the mixture on coordinate we 
integrate Eq. (i0) with boundary conditions x = 0, P2 = P0 - P01, P = Pn; x = x, P2 = P2(x), 
P = P(x). As a result, we obtain an expression for the vapor flux density: 

11 -- V T (2 -- m) DdhP o In p (x) (Po-- Po0 
I(1-6 vT'v) 2 .... _ _ I l R T  ~ POP2(x) (16) 

, T O . 

We will equate the right sides of Eqs. (ii) and (16), with consideration of condition (12): 

P 2 ( x ) - ( P ~ 1 7 6  exp{ - -x  In P~(P~176 }- (!7) 

P (x) Po i Po [Pt --P~ (l)l 
If the meniscus temperature is less than the liquid boiling point, then Ps(s < P0 and 

for practically any capillary radius Ps differs only insignificantly from P~. so that in 
Eq. (15) we may consider P(x) constant and equal to a mean value P(x) = (P0 + P1 )/2. If the 
meniscus temperature is above the boiling point, then Ps(s > P0 and Ps is insignificantly 
greater than Ps(s and with no significant reduction in accuracy we may take P(x) = [Ps + Ps 
(s in Eq. (15). integrating Eq. (15) from the channel mouth to the meniscus with the 
boundary conditions indicated above and considering Eq. (17), we obtain a transcendental 
equation for calculation of the mixture pressure above the liquid meniscus: 

InP~--P~(1)po--Po~ f ( ~h-~h~h -6 al )2(P,--P~--Po+PoO +(P~+P) 2 (112 -- 2~h) [(P, - -  P~)~ - (Po -- Podq.. _ 
a41 (Pz + P)" 

8(~--~h)3mh(pi@p) 3 [ ( P I  ---P,0 a --(Po-- Pol) 3] T(~)vTI T ( l ) , ,  ~ , lnVT!pt(P~176 {-(- lh --ql ~h -f---el ) [  Po,po P,P" ] ]~-' 

(1t2--2111)[( 
_ _  

Po [Pt-- P, (1)] 

p, "~ , po ,/'_. 1 
i -  E J - ( i -  

2a/h 

_ (:L.- n,)[ ( 1 - - .  , ,  C ~ p, }~ (1-' P~-oJP~ '/~ ]) 
3a4~ i -- 

,-: (p~ -- P b  

16,~, P~D~, {1. vr , '  )", ' 
�9 2Tr, 

(18) 
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where P is the larger of the pressures P0 and Ps(s 

If we take N(x) = N = const and VT = 0, then Eq. (18) simplifies significantly: 

in e '  -P,~ r~(P~ - -P~l (19)  
Po ---Pol 16qDoPo 

An equation differing slightly in form from Eq. (19) but identical in sense was obtained 
in [4]. In particular, the asymptotic behaviors of the function Ps as r + 0 in the present 
study and in (4) differ (it should be understood that the limiting transition is physically 
correct in view of the condition of continuity of the medium only to values Kn ~ 0.i). It 
follows from Eq. (19) that Ps is always less than the sum Ps(s + P0 - P01 and tends to the 
latter value as r + 0, while in [4] the pressure Ps becomes larger than the sum Ps(s + P0 - 
Pcl with decrease in capillary radius. This difference is due to the fact that the present 
study considers the effect of change in pressure of the vapor-gas mixture along channel 
length upon the diffusion fluxes of the components. Just as in the present study, an esti- 
mate of the maximum value of Ps was obtained by kinetic theory methods in [5]. 

It is of definite interest to delimit the ranges of existence of Stefan and viscous 
evaporation regimes. The transport regime is of the Stefan type if the liquid evaporates 
at a temperature below the boiling point from a capillary of radius sufficiently large that 
viscous resistance to the hydrodynmmic flow of the mixture may be neglected. Constancy of the 
total pressure is assumed. If viscous resistance to the hydrodynamic flow is considered, 
then, as follows from Eq. (19): 

& -- P~ 1 P l = P o  1+ 8~Doln 
r,Po XZ~/. (20) 

With c o n s i d e r a t i o n  of  t h i s ,  we w r i t e  Eq. (13) f o r  VT = 0 

[ 8~D~ I D~176 lnP~176 (21) 
] i = - -  1 r~Po(Po--P,) RTl Po--Ps 

Hence i t  i s  e v i d e n t  t h a t  t h e  l a r g e r  t h e  c a p i l l a r y  r a d i u s  and t h e  lower t he  e v a p o r a t i o n  tem- 
p e r a t u r e ,  t he  more a c c u r a t e l y  t h e  vapor  f l u x  d e n s i t y  i s  d e s c r i b e d  by t he  S t e f a n  e x p r e s s i o n ,  
wh i l e  t h e  p r e s s u r e  of  t he  v a p o r - g a s  m i x t u r e  above t he  l i q u i d  meniscus  i s  c l o s e r  to  t he  
mixture pressure at the channel mouth. 
of the Stefan type, if the inequality 

is satisfied. 

Consequently, the transport regime can be considered 

8~D~ ~ I (22) 
r~Po(Po--Ps) 

If the meniscus temperature is higher than the liquid boiling point, then Ps(s > P0, 
and, as follows from Eq. (18), as r + 

In this case, from Eq. 

p,=_p,( l)+(po_po,)exp{ r'[P~(l)--P2~ }. (23) 
16~hDoP o 

(13) we find 

D(l/2)~qP~ {ln Ps(/)-;- r2[p~(l)--Pe~ } (24) 
]~ = -- RIT (l/2) Po ' 16~hDoP o " 

This expression differs from the well-knownPoiseuille formula for viscous flow in its addi- 
tional term in in [Ps(Z)/P0]. Therefore, the vapor transport regime can be considered viscous 
if the inequality 

16~lDoPoln P~(I) 
Po 

r ~ [P~(l)--P~l ~1 (25) 

is satisfied. The vapor flux is then described by the Poiseuille expression more accurately, 
the larger the capillary radius and the higher the liquid meniscus temperature. 

In the case where neither of inequalities (23) or (25) is satisfied, the explicit form of 
the expressions for PL , and hence, for Jl, cannot be obtained from transcendental equation 
(18), so that the dependence of vapor flux density on liquid miniscus coordinate is des- 
cribed only by systems (ii) and (18). 
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NOTATION 

x, current coordinate; s meniscus coordinate; T(x), vapor-gas mixture temperature; 
P0, total mixture pressure at channel mouth; P0~, partial vapor pressure at channel mouth; 
P2(x), partial gas pressure; P(x), mixture pressure; Ps(s saturated vapor pressure above 
liquid meniscus; Ps vapor-gas mixture pressure above meniscus; VT, temperature gradient; 
H~, molecular mass of mixture; U2, molecular mass of gas; D, vapor diffusion coefficient 
in gas; Pl and P2, densities of vapor and gas; Jl and J2, density of vapor and gas fluxes; 
q, dynamic viscosity coefficient of vapor-gas mixture; L0, molar heat of evaporation of 
liquid at temperature To; Kn, Knudsen number; r, capillary radius; P0 - P01, partial gas 
pressure at channel mouth. 
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DETERMINATION OF THE THERMAL CONDUCTIVITY AND THERMAL 

DIFFUSIVITY OF SOLIDS BY UNILATERAL SOUNDING OF THE SURFACE 

E. A. Belov, V. V. Kurepin, 
and N. V. Nimenskii 

UDC 536.2.08 

The article analyzes the possibility of determining thermophysical character- 
istics by nondestructive unilateral sounding of a flat surface. Curves are 
presented for selecting the optimum regime of the experiments in dependence 
on the dimensions of the sounded body. 

The application of methods of nondestructive inspection of the thermophysical properties 
of materials under real conditions is impossible without taking into account the geometric 
dimensions of the body and its heat exchange with the environment. We will examine the 
effect of these factors on the result of measurement with the so-called isothermal sondes 
which are used in building, geology, refrigeration engineering [1-3]. Figure 1 shows a 
variant of the sonde for determining thermal conductivity I and thermal diffusivity a of 
isotropic materials in the range ,\ = 0.03-10 W/(m.~ The copper core with a flat cir- 
cular contact area is surrounded by an adiabatic shell with a heater. The system of auto- 
matic temperature control SART-I ensures that the temperatures of the core and of the shell 
are equal to each other, thus preventing heat losses from the core to the environment. The 
device is enclosed in a metal housing which can be shifted along the tubular supports. Be- 
fore the experiment the sonde was mounted above the surface of the investigated body, and 
the core was overheated by ~i = 10-15~ relative to the initial temperature of the material, 
and then the sonde was lowered onto the surface. The magnitude of the overheating was 
measured by a battery of differential thermocouples, and with the aid of the regulator SART- 
2 it was maintained at a constant level during the entire experiment. Thermal conductivity 
and thermal diffusivity can be determined from the time dependence of the integral thermal 
flux proceeding from the core to the material [3]: 

q('c)=4ro~ ~ [%(1--Biy~)l.4ro ;'i_(1 2Bi] -~) I@]'  (i) 
k I "a  
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